A Concise Neural Network Model for Estimating Software Effort

نویسندگان

  • Ch. Satyananda Reddy
  • KVSVN Raju
چکیده

In this research, it is concerned with constructing software effort estimation model based on artificial neural networks. The model is designed accordingly to improve the performance of the network that suits to the COCOMO model. In this paper, it is proposed to use multi layer feed forward neural network to accommodate the model and its parameters to estimate software development effort. The network is trained with back propagation learning algorithm by iteratively processing a set of training samples and comparing the network's prediction with the actual effort. COCOMO dataset is used to train and to test the network and it was observed that proposed neural network model improves the estimation accuracy of the model. The test results from the trained neural network are compared with that of the COCOMO model. The preliminary results obtained suggest that the proposed architecture can be replicated for accurately forecasting the software development effort. The aim of this study is to enhance the estimation accuracy of COCOMO model, so that the estimated effort is more close to the actual effort. Index Terms -artificial neural networks, back propagation, COCOMO, feed forward neural networks, software cost estimation, software effort estimation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Architecture Based on Artificial Neural Network and PSO Algorithm for Estimating Software Development Effort

Software project management has always faced challenges that have often had a great impact on the outcome of projects in future. For this, Managers of software projects always seek solutions against challenges. The implementation of unguaranteed approaches or mere personal experiences by managers does not necessarily suffice for solving the problems. Therefore, the management area of software p...

متن کامل

Estimating river suspended sediment yield using MLP neural network in arid and semi-arid basins Case study: Bar River, Neyshaboor, Iran

Abstract Erosion and sedimentation are the most complicated problems in hydrodynamic which are very important in water-related projects of arid and semi-arid basins. For this reason, the presence of suitable methods for good estimation of suspended sediment load of rivers is very valuable. Solving hydrodynamic equations related to these phenomenons and access to a mathematical-conceptual mode...

متن کامل

Comparison of numerical model, neural intelligent and GeoStatistical in estimating groundwater table

Modeling provides the studying of groundwater managers as an efficient method with the lowest cost. The purpose of this study was comparison of the numerical model, neural intelligent and geostatistical in groundwater table changes modeling. The information of Hamedan – Bahar aquifer was studied as one of the most important water sources in Hamedan province. In this study, MODFLOW numerical cod...

متن کامل

A hybrid model for estimating the probability of default of corporate customers

Credit risk estimation is a key determinant for the success of financial institutions. The aim of this paper is presenting a new hybrid model for estimating the probability of default of corporate customers in a commercial bank. This hybrid model is developed as a combination of Logit model and Neural Network to benefit from the advantages of both linear and non-linear models. For model verific...

متن کامل

Model for Thermal Conductivity of Nanofluids Using a General Hybrid GMDH Neural Network Technique

In this study, a model for estimating the NFs thermal conductivity by using a GMDH-PNN has been investigated. NFs thermal conductivity was modeled as a function of the nanoparticle size, temperature, nanoparticle volume fraction and the thermal conductivity of the base fluid and nanoparticles. For this purpose, the developed network contains 8 layers with 2 inputs in each layer and also tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009